PG6 S	Salt Hydrolysis	i i i i i i i i i i i i i i i i i i i			Name	Per
HA	\rightleftharpoons H ⁺ +	A- R	Really usef	ul E	$B + H_2O \rightleftharpoons$	$OH^- + HB^+$
	$H^+ \left[A^- \right]$	i	informatio	n	и И	I^{-} $\left[HB^{+} \right]$
$K_a = \frac{1}{\left[HA \right]}$			Equilibriu	m Konstants	$K_b = \frac{B}{B}$	
$K_{\mu} = \left[H^+ \right] \left[O H^- \right]$			$K_a \text{ or } K_b \text{ as}$ the listed s	appropriate for ubstance.		
Strong Acids		₩ L _ L _	HCN	$K_a = 4.9 \times 10^{-10}$	Str	ong Bases
HCl	HNO ₃	$K_a \times K_b = K_w$	HF	$K_a = 3.5 \times 10^{-4}$	LiOH	CsOH
HBr	H_2SO_4		HC ₂ H ₃ O ₂	$K_a = 1.8 \times 10^{-5}$	NaOH	Ca(OH) ₂
HI	HClO ₄		Al ³⁺ NH ₃	$K_a = 1.5 \times 10^{-5}$ $K_b = 1.8 \times 10^{-5}$	КОН	Sr(OH) ₂
	HClO ₃	$M \times V = M \times V$	$(C_2H_5)_2NH$	$K_b = 1.3 \times 10^{-3}$	Rb OH	Ba (OH) ₂

- 1. Which of the following salts, when dissolved in water, at 25°C, cause a change in pH? If there is a pH change, will the pH be above or below 7? Write a hydrolysis reaction that illustrates the cause of the pH change. Calculate the pH if 2.0 g of the salt is dissolved to make 100 ml of solution.
 - a. barium chloride, BaCl₂ (208.2 g/mol) Acidic, Basic or Neutral?
 - b. ammonium perchlorate, NH₄ClO₄(117.492 g/mol) Acidic, Basic or Neutral?
 - c. sodium cyanide, NaCN (49.01 g/mol) Acidic, Basic or Neutral?
 - d. ammonium nitrate, NH4NO3 (80.052 g/mol) Acidic, Basic or Neutral?
 - e. potassium acetate, KC₂H₃O₂ (98.144 g/mol) Acidic, Basic or Neutral?
 - f. diethylamide bromide, (C₂H₅)₂NH₂Br (154.046 g/mol) Acidic, Basic or Neutral?
 - g. aluminum perchlorate, Al(ClO₄)₃ (325.33 g/mol) Acidic, Basic or Neutral?

PG6 Salt Hydrolysis

- 1. Which of the following salts, when dissolved in water, at 25°C, cause a change in pH? If there is a pH change, will the pH be above or below 7? Write a hydrolysis reaction that illustrates the cause of the pH change. Calculate the pH if 2.0 g of the salt is dissolved in 100 ml of water.
 - a. barium chloride, BaCl₂ (208.2 g/mol)

pH will remain at 7. $BaCl_2 \rightarrow Ba^{2+} + 2 Cl^-$ (note the single arrow since $BaCl_2$ is a soluble ionic compound). The Ba^{2+} ions are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H⁺ or OH⁻ ions. The Cl⁻ ions are also "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H⁺ or OH⁻ ions.

b. ammonium perchlorate, NH₄ClO₄ (117.492 g/mol)

pH will change to below 7, acidic. $NH_4CIO_3 \rightarrow NH_{4^+} + CIO_{3^-}$ (note the single arrow since NH_4CIO_3 is a soluble ionic compound) The CIO_{3^-} ions are are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H^+ or OH^- ions. But the NH_{4^+} ions are a conjugate WA and partially dissociate in water and produce H^+ ions. $NH_{4^+} \rightleftharpoons H^+ + NH_3$

$$2g \times \frac{1mol}{117.492 \text{ g}} = 0.017 \text{ mol} \quad \frac{0.017 \text{ mol}}{0.1L} = 0.17 \text{ M} \qquad K_a \times K_b = K_w \quad \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} \quad K_b = \frac{\left[H^+\right] [NH_3]}{\left[NH_4^+\right]}$$
$$5.56 \times 10^{-10} = \frac{x^2}{[0.17 \text{ M}]} \quad x = \left[H^+\right] = 9.7 \times 10^{-6} \quad pH = 5.01$$

c. sodium cyanide, NaCN (49.01 g/mol)

pH will change to above 7, basic. NaCN \rightarrow Na⁺ + CN⁻ (note the single arrow since NaCN is a soluble ionic compound) The Na⁺ ions are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H⁺ or OH⁻ ions. But the CN⁻ ions are a conjugate WB which hydrolyzes in water and produces extra OH⁻ ions. CN⁻ + H₂O \rightleftharpoons OH⁻ + HCN

$$2g \times \frac{1mol}{49.01g} = 0.0408 mol \quad \frac{0.0408 mol}{0.1L} = 0.408 M \quad K_a \times K_b = K_w \quad \frac{1 \times 10^{-14}}{3.5 \times 10^{-4}} = 2.9 \times 10^{-11} \quad K_b = \frac{\left[OH^{-}\right]\left[HCN\right]}{\left[CN^{-}\right]}$$
$$2.9 \times 10^{-11} = \frac{x^2}{\left[0.408\right]} \quad x = \left[OH^{-}\right] = 3.4 \times 10^{-6} \quad pOH = 5.47 \quad pH = 8.53$$

d. ammonium nitrate, NH4NO3 (80.052 g/mol)

pH will change to below 7, acidic. $NH_4NO_3 \rightarrow NH_{4^+} + NO_3^-$ (note the single arrow since NH_4NO_3 is a soluble ionic compound) The NO_3^- ions are are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H^+ or OH^- ions. But the NH_{4^+} ions are a conjugate WA and partially dissociate in water and produce H^+ ions. $NH_{4^+} \rightleftharpoons H^+ + NH_3$

$$2g \times \frac{1mol}{80.052g} = 0.025mol \quad \frac{0.025mol}{0.1L} = 0.250M \quad K_a \times K_b = K_w \quad \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} \quad K_b = \frac{\left[H^+\right] \left[NH_3\right]}{\left[NH_4^+\right]}$$
$$5.56 \times 10^{-10} = \frac{x^2}{\left[0.25\right]} \quad x = \left[H^+\right] = 1.2 \times 10^{-5} \quad pH = 4.93$$

Acid Base Equilibrium – Putting it all together

e. potassium acetate, KC₂H₃O₂ (98.144 g/mol)

pH will change to above 7, basic. $KC_2H_3O_2 \rightarrow K^+ + C_2H_3O_2^-$ (note the single arrow since $KC_2H_3O_2$ is a soluble ionic compound) The K⁺ ions are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H⁺ or OH⁻ ions. But the C₂H₃O₂⁻ ions are a conjugate WB which hydrolyzes in water and produces extra OH⁻ ions. $C_2H_3O_2^- + H_2O \rightleftharpoons OH^- + HC_2H_3O_2$

$$2g \times \frac{1mol}{98.144g} = 0.0204mol \quad \frac{0.0204mol}{0.1L} = 0.204M \quad K_a \times K_b = K_w \quad \frac{1 \times 10^{-14}}{1.8 \times 10^{-5}} = 5.56 \times 10^{-10} \quad K_b = \frac{\left[OH^{-}\right]\left[HC_2H_3O_2\right]}{\left[C_2H_3O_2^{-}\right]}$$
$$5.56 \times 10^{-10} = \frac{x^2}{\left[0.204\right]} \quad x = \left[OH^{-}\right] = 1.1 \times 10^{-5} \quad pOH = 4.97 \quad pH = 9.03$$

f. diethylamide bromide, (C₂H₅)₂NH₂Br (154.046 g/mol)

pH will change to below 7, acidic. $(C_2H_5)_2NH_2Br \rightarrow (C_2H_5)_2NH_2^+ + Br^-$ (note the single arrow since $(C_2H_5)_2NH_2Br$ is a soluble ionic compound, you should be able to recognize this because of the Br⁻ at the end of the molecule and the acid/base context of the question) The Br⁻ ions are are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H⁺ or OH⁻ ions. But the $(C_2H_5)_2NH_2^+$ ions partially dissociate in water and produce H⁺ ions.

 $(C_2H_5)_2NH_2^+ \Leftrightarrow H^+ + (C_2H_5)_2NH$

$$2g \times \frac{1mol}{154.046g} = 0.013mol \quad \frac{0.013mol}{0.1L} = 0.130M \quad K_a \times K_b = K_w \quad \frac{1 \times 10^{-14}}{1.3 \times 10^{-3}} = 7.69 \times 10^{-12} \quad K_a = \frac{\left[H^+\right]\left[(C_2H_5)_2NH\right]}{\left[(C_2H_5)_2NH_2^+\right]}$$
$$7.69 \times 10^{-12} = \frac{x^2}{\left[0.130\right]} \quad x = \left[H^+\right] = 9.99 \times 10^{-7} \quad pH = 6.00$$

g. aluminum perchlorate, Al(ClO₄)₃ (325.33 g/mol)

pH will change to below 7, acidic. $Al(ClO_4)_3 \rightarrow Al^{3+} + ClO_4^-$ (note the single arrow since ClO₄ is a soluble ionic compound, you should be able to recognize this because of the ClO₄⁻ at the end and the acid/base context) The Al³⁺ ions interact with water and produce H⁺ ions. But the ClO₄⁻ ions are are "pathetic" meaning they do not hydrolyze in water and thus do not produce any extra H⁺ or OH⁻ ions. (Al(H₂O)₆³⁺ \rightleftharpoons Al(H₂O)₅(OH)²⁺ + H⁺ (*Note: You would never have to write this equation.*))

$$2g \times \frac{1mol}{325.33g} = 0.00615mol \qquad \frac{0.00615mol}{0.1L} = 0.0615M$$
$$K_a = \frac{\left[H^+\right]\left[Al(OH)^{2^+}\right]}{\left[Al^{3^+}\right]} 1.5 \times 10^{-5} = \frac{x^2}{\left[0.0615\right]} \qquad x = \left[H^+\right] = 9.6 \times 10^{-4} \qquad pH = 3.02$$