Unit C – Energy & States of Matter

NameP	er
-------	----

Papers worth reviewing

- What Makes a Good Data Table?
- What makes a Good Graph?
- tiny Lab Hot Water Mixed with Cold Water
- LAD C1 Specific Heat Capacity of Metals
- LAD C2 Heat of Fusion of Water
- NoteSheet C1 Phase Changes
- NoteSheet C2 Calorimetry
- Practice C1 Calorimetry
- Practice C2 Phase Changes & Temp Changes
- Consider using the class presentation and clicker questions for review as well (available on the unit C document page at the top)
- Consider reviewing your openers

Objectives

- 1. Recognize that energy must come or go for temperature changes to occur.
 - Understand that temperature changes are kinetic energy changes.
- 2. Recognize that energy must come or go for phase changes to occur.
 - Understand that phase changes are potential energy changes and occur at a constant temperature.
- 3. Understand that temperature and heat are not the same thing.
- 4. Understand that the Joule is our energy unit. (We will not use calorie, Calorie, or BTU)
- 5. Recognize that heat lost has to go somewhere, since energy is conserved
 - Thus we will perform calculations assuming heat lost = heat gained $-q_{Lost} = q_{Gained}$
 - Recognize that this assumption is not perfect and be aware of methods to minimize any loss of energy.
 - Be able to identify error sources and track the resulting effect of error on measurements and calculations.
- 6. Explain what is occurring nanoscopically when a substance increases or decreases temperature.
- 7. State the meaning of specific heat capacity, c. Know what units are on the value.
 - Know when to use specific heat capacity for heat calculations with $q = m \times c \times \Delta T$
- 8. Explain what is occurring nanoscopically when a substance changes phase.
- 9. State the meaning of ΔH_{fusion} and $\Delta H_{vaporization}$
 - Know when to use ΔH values for heat calculations with $q = \Delta H \times m$
- 10. Use a heating or cooling curve for a substance
 - Identify various parts of the curve, what processes are happening, how to calculate energy for thos segments.
 - Understand how slope of the sloping portions is related to magnitude of specific heat capacity
 - Understand why melting/freezing plateaus are always shorter that boiling/condensing plateaus

Unit C – Energy & States of Matter

Vocabulary List

- phase changes
 - melting / freezing
 - ΔH_{fusion}
 - boiling / condensing
 - ΔH_{vaporization}
- endothermic
- exothermic
- joules, kilojoules
- heating and cooling graphs (curves)
- calorimeter
- specific heat capacity
- temperature change
 - ΔT
 - $T_{final} T_{initial}$
- temperature organizer

This vocabulary list is meant to complement your study. Knowing this list alone, without the concepts on the front would not prepare you for the test.