P	G3 (pg 1 of 2)	Writing & Naming Ionic Formul (How do you know when you need the Roman	as Nu	Name meral?)	Per_
Wri	ite the formula c	or the name (as appropriate) for the following com	рои	nds.	
1.	iron(II) fluorid	le	11.	nickel(II) bromide	
2.	lead(IV) chlor	ide	12.	tin(IV) iodide	
3.	copper(I) oxid	e	13.	sodium oxide	
4.	chromium (VI) sulfide	14.	manganese (VII) sulfide	
5.	antimony(V) n	itride	15.	vanadium(V) nitride	
6.	MnO ₂		16.	PbO ₂	
7.	CuO		17.	FeS	
8.	InF ₃		18.	AlCl ₃	
9.	Cr ₂ S ₃		19.	Mn ₂ S ₃	
10.	CuCl		20.	HgCl	

Answers - Writing & Naming Ionic Compounds

- 1. Fe^{2+} F⁻ criss-cross to get FeF_2
- 2. Pb⁴⁺ Cl⁻ criss-cross to get PbCl₄
- 3. Cu^+ O²⁻ criss-cross to get Cu₂O
- 4. Cr^{6+} S²⁻ criss-cross to get CrS₃
- 5. Sb^{5+} N³⁻ criss-cross to get Sb_3N_5
- 6. Since the oxide carries a 2- charge, and there is one of each ion, the charge must be the same magnitude, opposite charge, thus Mn must be 2+, resulting in manganese(IV) oxide
- 7. Since the oxide carries a 2- charge, and there is one of each ion, the charge must be the same magnitude, opposite charge, thus Cu must be 2+, resulting in copper(II) oxide
- 8. Indium always carries a 3+ charge, thus there is no need for a Roman Numeral, thus simply: indium fluoride
- 9. Since the sulfide carries a 2- charge, 3 of them × 2- equals 6-, and the chromium ions total charge must be opposite in sign, but equal in magnitude. Thus 2 chromium ions × "what charge" = 6+? Thus the chromium must be 3+, resulting in chromium(III) sulfide
- 10. Since the chloride carries a 1- charge, and there is one of each ion, the charge must be the same magnitude, opposite charge, thus Cu must be 1+, resulting in copper(I) chloride
- 11. Ni²⁺ Br⁻ criss-cross to get NiBr₂
- 12. Sn^{4+} I⁻ criss-cross to get SnI₄
- 13. Na⁺ O^{2-} criss-cross to get Na₂O
- 14. Mn^{7+} S²⁻ criss-cross to get Mn_2S_7
- 15. V^{5+} N³⁻ criss-cross to get V_3N_5
- 16. Since the oxide ion carries a 2- charge, 2 of them \times 2- equals 4-, and the lead ions total charge must be opposite in sign, but equal in magnitude. Thus the one lead ion must be 4+ charge, resulting in lead(IV) oxide
- 17. Since the oxide carries a 2- charge, and there is one of each ion, the charge must be the same magnitude, opposite charge, thus Fe must be 2+, resulting in iron(II) sulfide
- 18. Aluminum always carries a 3+ charge, thus there is no need for a Roman Numeral, resulting in aluminum chloride
- 19. Since the sulfide carries a 2- charge, 3 of them × 2- equals 6-, and the manganese ions total charge must be opposite in sign, but equal in magnitude. Thus 2 manganese ions × "what charge" = 6+? Thus the manganese must be 3+, resulting in manganese(III) sulfide
- 20. Since the chloride carries a 1- charge, and there is one of each ion, the charge must be the same magnitude, opposite charge, thus Hg must be 1+, resulting in mercury(I) chloride