PH3 (pg 1 of 4) Double Replacement (Acid Base & Precipitation)

- Assume that all of the reactant compounds (salts) below are put into water, if solution is not already stated.
 - First write out the product in words, then use the solubility chart to determine if a reaction *can* occur. (Remember, for a precipitation-type reaction to occur, both reactants must be soluble AND then one (or both) of the products must be insoluble. If all products are soluble, no reaction occurs.)

Name

- If a precipitation type reaction does **not** occur be sure to state why it does not occur.
- If a reaction does occur, predict the products, and write a skeleton equation, then balance. Identify any precipitates with (s) or (ppt) symbol. (You may leave the (aq) off.)
- If a reaction does occur, rewrite the "molecular" equation as a <u>net ionic equation</u>. Because spectator ions are not written, you may be able to reduce the coefficients and simplify the balancing.
- 1. lead(II) nitrate is combined with aluminum chloride
- 2. sodium phosphate is combined with strontium chloride
- 3. sodium hydroxide solution is combined with *strong* hydrochloric acid solution.
- 4. lithium hydroxide solution is combined with *weak* phosphoric acid solution.
- 5. calcium carbonate is combined with copper(II) sulfate
- 6. calcium iodide is combined with silver chlorate
- 7. nickel(II) chloride is combined with potassium ferrocyanide
- 8. a solution of barium hydroxide is combined with *strong* hydrochloric acid solution.
- 9. ammonium carbonate is combined with copper(I) sulfate
- 10. sodium hydroxide solution is combined with weak acetic acid solution

PH3 (pg 2 of 4) Double Replacement (Acid Base & Precipitation)

11. ammonium sulfate is combined with magnesium phosphate

12. strontium hydroxide solution is combined with strong nitric acid solution.

- 13. copper(I) sulfate is combined with lead(II) acetate
- 14. sodium hydroxide is combined with lead(IV) chlorate
- 15. tin(II) chromate is combined with sodium nitrate
- 16. potassium chlorate is combined with copper(II) bromide
- 17. potassium hydroxide solution is combined with strong sulfuric acid
- 18. a solution of calcium hydroxide is combined with weak carbonic acid solution
- 19. ammonium phosphate is combined with zinc chloride
- 20. calcium chloride is combined with mercury(I) chlorate
- 21. silver nitrate is combined with sodium bromide

PH3 (pg 3 of 4) Double Replacement (Acid Base & Precipitation)

ANSWERS

1.	Skeleton: $Pb(NO_3)_2 + AlCl_3 \rightarrow PbCl_{2 (ppt)} + Al(NO_3)_3$ Balanced: $3 Pb(NO_3)_2 + 2 AlCl_3 \rightarrow 3 PbCl_{2 (ppt)} + 2 Al(NO_3)_3$ formation of a precipitate \therefore a reaction occurs.
	Net ionic equation: $Pb^{2+} + 2Cl^- \rightarrow PbCl_2$
2.	Skeleton: Na ₃ PO ₄ + SrCl ₂ \rightarrow Sr ₃ (PO ₄) _{2 (ppt)} + NaCl Balanced: 2 Na ₃ PO ₄ + 3 SrCl ₂ \rightarrow Sr ₃ (PO ₄) _{2 (ppt)} + 6 NaCl
	formation of a precipitate \therefore a reaction occurs. Net ionic equation: 2 PO ₄ ³⁻ + 3 Sr ²⁺ \rightarrow Sr ₃ (PO ₄) ₂
3.	$\begin{array}{llllllllllllllllllllllllllllllllllll$
4.	Skeleton: $LiOH_{(aq)} + H_3PO_{4(aq)} \rightarrow Li_3PO_{4(aq)} + H_2O_{(L)}$ Balanced: $3 LiOH_{(aq)} + H_3PO_{4(aq)} \rightarrow Li_3PO_{4(aq)} + 3 H_2O_{(L)}$ Net Ionic: $3 OH^{(aq)} + H_3PO_{4(aq)} \rightarrow 3 H_2O_{(L)} + PO_4^{3-}$ (since phosphoric acid is weak, it should be represented as a molecule, not as separated ions)
5.	Calcium carbonate reactant is not soluble ∴ no reaction can occur.
6.	Skeleton: CaI_2 + $AgClO_3$ \rightarrow $AgI_{(ppt)}$ + $Ca(ClO_3)_2$ Balanced: CaI_2 + $2 AgClO_3$ \rightarrow $2 AgI_{(ppt)}$ + $Ca(ClO_3)_2$ formation of a precipitate \therefore a reaction occurs.Net ionic equation: Ag^+ + $I^ \rightarrow$ AgI
7.	$\begin{array}{rcl} 2\text{NiCl}_2 &+ & \text{K}_4\text{Fe}(\text{CN})_6 &\rightarrow & 4\text{KCl} &+ & \text{Ni}_2\text{Fe}(\text{CN})_{6(\text{ppt})} \\ \text{formation of a precipitate } \therefore \text{ a reaction occurs.} \\ \text{Net ionic equation:} & 2 & \text{Ni}^{2+} &+ & \text{Fe}(\text{CN})_6^{4-} &\rightarrow & \text{Ni}_2\text{Fe}(\text{CN})_6 \end{array}$
8.	You are told a solution of barium hydroxide, so you can assume the Ba(OH) ₂ is dissolved. Skeleton: Ba(OH) _{2(aq)} + HCl _(aq) \rightarrow BaCl _{2(aq)} + H ₂ O _(L) Balanced: Ba(OH) _{2(aq)} + 2 HCl _(aq) \rightarrow BaCl ₂ + 2 H ₂ O _(L) Net Ionic: 2 OH ⁻ _(aq) + 2 H ⁺ _(aq) \rightarrow 2 H ₂ O _(L) can be reduced: OH ⁻ _(aq) + H ⁺ _(aq) \rightarrow H ₂ O _(L)
9.	Skeleton: $(NH_4)_2CO_3 + Cu_2SO_4 \rightarrow Cu_2CO_{3 (ppt)} + (NH_4)_2SO_4$ Balanced: already balanced formation of a precipitate \therefore a reaction occurs.
	Net ionic equation: CO_3^{2-} + 2 $Cu^+ \rightarrow Cu_2CO_3$
10.	Skeleton: $NaOH_{(aq)}$ + $HC_2H_3O_{2(aq)}$ \rightarrow $NaC_2H_3O_{2(aq)}$ + $H_2O_{(L)}$ Balanced:already balancedNet Ionic: $OH^{(aq)}$ + $HC_2H_3O_{2(aq)}$ \rightarrow $H_2O_{(L)}$ + $C_2H_3O_2^-$ (since acetic acid is weak, it should be represented as a molecule, not as separated ions)
11.	Magnesium phosphate reactant is not soluble therefore no reaction can occur.
12.	Strontium hydroxide is soluble enough, and since you are told "solution" you can assume dissolved. Skeleton: $Sr(OH)_{2(aq)} + HNO_3 \rightarrow Sr(NO_3)_2 + H_2O_{(L)}$

PH3 (pg 4 of 4) Double Replacement (Acid Base & Precipitation)

ANSWERS

13.	Skeleton: $Cu_2SO_4 + Pb(C_2H_3O_2)_2 \rightarrow PbSO_{4 (ppt)} + CuC_2H_3O_2$ Balanced: $Cu_2SO_4 + Pb(C_2H_3O_2)_2 \rightarrow PbSO_{4 (ppt)} + 2 CuC_2H_3O_2$ formation of a precipitate : a reaction occurs
	Net ionic equation: SO_4^{2-} + $Pb^{2+} \rightarrow PbSO_4$
14.	Skeleton:NaOH+Pb(ClO_3)_4\rightarrowPb(OH)_{4(ppt)}+NaClO_3Balanced:4 NaOH+Pb(ClO_3)_4\rightarrowPb(OH)_{4(ppt)}+4 NaClO_3formation of a precipitate \therefore a reaction occurs.Net ionic:4 OH^-+Pb(OH)_4
15.	tin(II) chromate is not soluble \therefore no reaction can occur.
16.	both copper chlorate and potassium bromide products are soluble therefore no reaction can occur.
17.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
18.	You are told a solution of calcium hydroxide, so you can assume the Ca(OH) ₂ is dissolved. Skeleton: $Ca(OH)_{2(aq)} + H_2CO_{3(aq)} \rightarrow CaCO_{3(ppt)} + H_2O_{(L)}$ Balanced: $Ca(OH)_{2(aq)} + H_2CO_{3(aq)} \rightarrow CaCO_{3(ppt)} + 2 H_2O_{(L)}$ Net Ionic: $Ca^{2+} + 2 OH^- + H_2CO_{3(aq)} \rightarrow CaCO_{3(ppt)} + 2 H_2O_{(L)}$ (since carbonic acid is weak, it should be represented as a molecule, not as separated ions)
19.	Skeleton: $(NH_4)_3PO_4$ + $ZnCl_2 \rightarrow Zn_3(PO_4)_{2 (ppt)}$ + NH_4Cl Balanced2 $(NH_4)_3PO_4$ +3 $ZnCl_2 \rightarrow Zn_3(PO_4)_{2 (ppt)}$ +6 NH_4Cl formation of a precipitate \therefore a reaction occurs.Net ionic equation:2 PO_4^{3+} +3 $Zn^{2+} \rightarrow Zn_3(PO_4)_2$
20.	Skeleton: $CaCl_2 + HgClO_3 \rightarrow HgCl_{(ppt)} + Ca(ClO_3)_2$ Balanced: $CaCl_2 + 2HgClO_3 \rightarrow 2HgCl_{(ppt)} + Ca(ClO_3)_2$ formation of a precipitate \therefore a reaction occurs. Net ionic equation: $Cl^- + Hg^+ \rightarrow HgCl$
21.	Skeleton:NaBr+AgNO3 \rightarrow AgBr (ppt)+NaNO3Balanced:already balancedformation of a precipitate \therefore a reaction occurs.Net ionic equation:Br $^-$ +AgBr