P H5 (pg 1 of 2) **Sythesis and Decomposition Reactions**

Write correct skeleton equations for these synthesis or decomposition reactions, then balance. Determine if the reaction is also an oxidation reduction (redox) reaction. If so, identify the oxidation numbers of all elements, determine which element is oxidized, and which is reduced, and then determine the total number of electrons transferred.

- 1. Nickel(II) chlorate decomposes when heated into nickel chloride and oxygen gas.
- 2. Cesium carbonate decomposes upon heating into cesium oxide and carbon dioxide.
- 3. Phosphoric acid forms when water is poured over diphosphorus pentoxide.
- 4. Silver oxide decomposes into its elements.
- 5. Magnesium bromide reacts with oxygen gas to produce magenesium bromate.
- 6. Gaseous dinitrogen trioxide and liquid water are the products of the decomposition of aqueous nitrous acid.
- 7. Water and oxygen gas are the products of the decomposition of hydrogen peroxide, H₂O₂.
- 8. Iron(III) oxide and liquid water are the products from the decomposition of of iron(III) hydroxide.
- 9. Barium oxide reacts with carbon dioxide to produce barium carbonate.
- 10. Hydrogen and oxygen gas react explosively to produce water.
- 11. Gallium oxide reacts with water to produce gallium hydroxide.
- 12. Aluminum oxide is produced from its elements.

P H5 (pg 2 of 2) Synthesis and Decomposition Reactions

ANSWERS

1.	skeleton: Ni(Constant) skeleton: Ni(Constant)	$\begin{array}{rcl} \text{ClO}_{3})_{2} & \rightarrow & \text{NiCl}_{2} & + & \text{O}_{2} \\ \text{Ni} & 2+ \rightarrow 2+ & \text{neither oxidized} \\ \text{Cl} & 5+ \rightarrow 1- (6e-\text{ gained } \times 2) & \text{re} \end{array}$	balanced: nor reduced educed	$Ni(ClO_3)_2 \rightarrow NiCl_2 + 3 O_2$ d	decomposition, redox
		O $2 \rightarrow 0$ (2e - lost ×6) oxidiz	ed	12 e- transferred	
2.	skeleton: Cs ₂ C	$CO_3 \rightarrow Cs_2O + CO_2$	already ba	alanced	decomoposition, NOT redox
3.	skeleton: P ₂ C	$D_5 + H_2O \rightarrow H_3PO_4$	balanced:	$P_2O_5 + 3 H_2O \rightarrow 2 H_3PO_4$	synthesis, NOT redox
4.	skeleton: Ag ₂ (oxidation #'s:	$O \rightarrow Ag + O_2$ Ag 1+ $\rightarrow 0$ (1e- gained ×4) red	balanced: duced	$2 \ Ag_2 O \ \rightarrow \ 4 \ Ag \ + \ O_2$	decomposition, redox
		$O 2 - lost \rightarrow 0$ (2e-×2) oxidize	d	4 e– transferred	
5.	skeleton: MgF oxidation #'s:	$Br_2 + O_2 \rightarrow Mg(BrO_3)_2$ $Mg 2+ \rightarrow 2+$ neither oxidized $Br_1 - \rightarrow 5+(6e-lost \times 2)$ oxid	balanced: nor reduce	$\begin{array}{rcl} MgBr_2 &+& 3 \ O_2 & \rightarrow & Mg(BrO_3)_2 \\ d \end{array}$	synthesis, redox
		O $0 \rightarrow 2^-$ (2e- gained ×6) red	duced	12 e- transferred	
6.	skeleton: HN	$O_2 \rightarrow N_2O_3 + H_2O$	balanced:	$2 \ HNO_{2(aq)} \ \rightarrow \ N_2O_{3(g)} \ + \ H_2O_{(L)}$	decomposition, NOT redox
7.	skeleton: H ₂ to oxidation #'s:	$O_2 \rightarrow O_2 + H_2O$ H 1+ \rightarrow 1+ neither oxidized no O 1- \rightarrow 0 (1e- lost ×2) oxidiz	balanced: or reduced	$2 H_2O_2 \rightarrow O_2 + H_2O$	decomposition, redox
		O $1 \rightarrow 2 \rightarrow (1e - \text{ gained } \times 2)$ a	lso reduced	d 2 e- transferred	
8.	skeleton: Fe(C	$OH_{3} \rightarrow Fe_{2}O_{3} + H_{2}O_{3}$	balanced:	$2 \text{ Fe}(\text{OH})_3 \rightarrow \text{ Fe}_2\text{O}_{3(s)} + 3 \text{ H}_2\text{O}$	decomposition, NOT redox
9.	skeleton: BaO	$0 + CO_2 \rightarrow BaCO_3$	already ba	alanced	synthesis, NOT redox
10.	skeleton: O ₂ oxidation #'s:	+ $H_2 \rightarrow H_2O$ H is 1+ $\rightarrow 0$ (1e- lost ×4) oxid	balanced: ation	$O_2 \ + \ 2 \ H_2 \ \rightarrow \ 2 \ H_2O$	synthesis, redox
		$0 0 \rightarrow 2^{-} (2e^{-} \text{ gained } \times 2) \text{ red}$	duction	4 e– transferred	
11.	skeleton: Ga ₂ ($O_3 + H_2O \rightarrow Ga(OH)_3$	balanced:	$Ga_2O_3 + 3 H_2O \rightarrow 2 Ga(OH)_3$	synthesis, not redox
12.	skeleton: Al - oxidation #'s:	+ $O_2 \rightarrow Al_2O_3$ Al $0 \rightarrow 3+ (3e-lost \times 2)$ oxidized	balanced: zed	$4 \text{ Al} + 3 \text{ O}_2 \rightarrow 2 \text{ Al}_2 \text{O}_3$	decomposition, redox
		O $0 \rightarrow 2-(2e-\text{gained} \times 6)$ red	duced	12 e- transferred	